Peripheral tissular analysis of rapamycin's effect as a neuroprotective agent in vivo

Naunyn Schmiedebergs Arch Pharmacol. 2022 Oct;395(10):1239-1255. doi: 10.1007/s00210-022-02276-6. Epub 2022 Jul 27.

Abstract

Rapamycin is the best-characterized autophagy inducer, which is related to its antiaging and neuroprotective effects. Although rapamycin is an FDA-approved drug for human use in organ transplantation and cancer therapy, its administration as an antiaging and neuroprotective agent is still controversial because of its immunosuppressive and reported side effects. Therefore, it is critical to determine whether the dose that exerts a neuroprotective effect, 35 times lower than that used as an immunosuppressant agent, harms peripheral organs. We validated the rapamycin neuroprotective dosage in a Parkinson's disease (PD) model induced with paraquat. C57BL/6 J mice were treated with intraperitoneal (IP) rapamycin (1 mg/kg) three times per week, followed by paraquat (10 mg/kg) twice per week for 6 weeks, along with rapamycin on alternate days. Rapamycin significantly decreased dopaminergic neuronal loss induced by paraquat. Since rapamycin's neuroprotective effect in a PD model was observed at 7 weeks of treatment; we evaluated its effect on the liver, kidney, pancreas, and spleen. In addition, we prolonged treatment with rapamycin for 14 weeks. Tissue sections were subjected to histochemical, immunodetection, and morphometric analysis. Chronic rapamycin administration does not affect bodyweight, survival, and liver or kidney morphology. Although the pancreas tissular architecture and cellular distribution in Langerhans islets are modified, they may be reversible. The spleen B lymphocyte and macrophage populations were decreased. Notably, the lymphocyte T population was not affected. Therefore, chronic administration of a rapamycin neuroprotective dose does not produce significant tissular alterations. Our findings support the therapeutic potential of rapamycin as a neuroprotective agent.

Keywords: Chronic exposure; Histology; Neuroprotective dose; Rapamycin; mTOR.

MeSH terms

  • Animals
  • Humans
  • Immunosuppressive Agents / adverse effects
  • Mice
  • Mice, Inbred C57BL
  • Neuroprotective Agents* / pharmacology
  • Neuroprotective Agents* / therapeutic use
  • Paraquat
  • Sirolimus / pharmacology
  • Sirolimus / therapeutic use

Substances

  • Immunosuppressive Agents
  • Neuroprotective Agents
  • Paraquat
  • Sirolimus