Dietary Carbohydrate as Glycemic Load, Not Fat, Coupled with Genetic Permissiveness Favoring Rapid Growth and Extra Calories, Dictate Metabolic Syndrome and Diabetes Induction in Nile Rats (Arvicanthis niloticus)

Nutrients. 2022 Jul 26;14(15):3064. doi: 10.3390/nu14153064.

Abstract

Objective: Whether dietary carbohydrate (CHO) or fat is more involved in type 2 diabetes (T2DM) induction uncomplicated by dietary fiber was addressed in a spontaneous diabetic model, the diurnal Nile rat that mimics the human condition. Methods: A total of 138 male Nile rats were fed plant-based and animal-based saturated fat where 10% energy as CHO and fat were exchanged across 5 diets keeping protein constant, from 70:10:20 to 20:60:20 as CHO:fat:protein %energy. Diabetes induction was analyzed by: 1. diet composition, i.e., CHO:fat ratio, to study the impact of diet; 2. quintiles of average caloric intake per day to study the impact of calories; 3. quintiles of diabetes severity to study the epigenetic impact on diabetes resistance. Results: High glycemic load (GLoad) was most problematic if coupled with high caloric consumption. Diabetes severity highlighted rapid growth and caloric intake as likely epigenetic factors distorting glucose metabolism. The largest weanling rats ate more, grew faster, and developed more diabetes when the dietary GLoad exceeded their gene-based metabolic capacity for glucose disposal. Diabetes risk increased for susceptible rats when energy intake exceeded 26 kcal/day and the GLoad was >175/2000 kcal of diet and when the diet provided >57% energy as CHO. Most resistant rats ate <25 kcal/day independent of the CHO:fat diet ratio or the GLoad adjusted to body size. Conclusion: Beyond the CHO:fat ratio and GLoad, neither the type of fat nor the dietary polyunsaturated/saturated fatty acid (P/S) ratio had a significant impact, suggesting genetic permissiveness affecting caloric and glucose intake and glucose disposition were key to modulating Nile rat diabetes. Fat became protective by limiting GLoad when it contributed >40% energy and displaced CHO to <50% energy, thereby decreasing the number of diabetic rats and diabetes severity.

Keywords: glycemic load; high-carbohydrate diet; high-fat diet; macronutrient ratio; type 2 diabetes.

MeSH terms

  • Animals
  • Blood Glucose / metabolism
  • Diabetes Mellitus, Experimental*
  • Diabetes Mellitus, Type 2* / genetics
  • Dietary Carbohydrates / metabolism
  • Dietary Fats / metabolism
  • Energy Intake
  • Glucose
  • Glycemic Load*
  • Humans
  • Male
  • Metabolic Syndrome* / genetics
  • Murinae / metabolism
  • Permissiveness

Substances

  • Blood Glucose
  • Dietary Carbohydrates
  • Dietary Fats
  • Glucose

Grants and funding

Studies were supported in part by the Foster Lab Funds for Research and Teaching and Smart Balance, Inc. Avinaash Subramaniam was a scholar in training under a Brandeis–Massachusetts Institute of Technology (Department of Biomaterial Science and Engineering)-Harvard Brigham and Women’s Hospital research collaboration.