Syntheses and Properties of Metalated Tetradehydrocorrins

Inorg Chem. 2022 Aug 8;61(31):12308-12317. doi: 10.1021/acs.inorgchem.2c01642. Epub 2022 Jul 27.

Abstract

The monoanionic tetrapyrrolic macrocycle B,C-tetradehydrocorrin (TDC) resides chemically between corroles and corrins. This chemical space remains largely unexplored due to a lack of reliable synthetic strategies. We now report the preparation and characterization of Co(II)- and Ni(II)-metalated TDC derivatives ([Co-TDC]+ and [Ni-TDC]+, respectively) with a combination of crystallographic, electrochemical, computational, and spectroscopic techniques. [Ni-TDC]+ was found to undergo primarily ligand-centered electrochemical reduction, leading to hydrogenation of the macrocycle under cathodic electrolysis in the presence of acid. Transient absorption (TA) spectroscopy reveals that [Ni-TDC]+ and the two-electron-reduced [Ni-TDC]- possess long-lived excited states, whereas the excited state of singly reduced [Ni-TDC] exhibits picosecond dynamics. The Co(I) compound [Co-TDC] is air stable, highlighting the notable property of the TDC ligand to stabilize low-valent metal centers in contradistinction to other tetrapyrroles such as corroles, which typically stabilize metals in higher oxidation states.