Effect of Sodium Carboxymethyl Cellulose on Water and Salt Transport Characteristics of Saline-Alkali Soil in Xinjiang, China

Polymers (Basel). 2022 Jul 16;14(14):2884. doi: 10.3390/polym14142884.

Abstract

The scientific use of sodium carboxymethyl cellulose (CMC) to improve the production capacity of saline-alkali soil is critical to achieve green agriculture and sustainable land use. It serves as a foundation for the scientific use of CMC to clarify the water and salt transport characteristics of CMC-treated soil. In this study, a one-dimensional soil column infiltration experiment was carried out to investigate the effects of different CMC dosages (0, 0.2, 0.4, 0.6, and 0.8 g/kg) on the infiltration characteristics, infiltration model parameters, water and salt distribution, and salt leaching of saline-alkali soil in Xinjiang, China. The results showed that the final cumulative infiltration of CMC-treated soil increased by 8.63-20.72%, and the infiltration time to reach the preset wetting front depth increased by 1.02-3.96 times. The sorptivity (S) in the Philip infiltration model and comprehensive shape coefficient (α) in the algebraic infiltration model showed a trend of increasing first and then decreasing with CMC dosage, revealing a quadratic polynomial relationship. The algebraic model could accurately simulate the water content profile of CMC-treated soil. CMC enhanced the soil water holding capacity and salt leaching efficiency. The average soil water content, desalination rate, and leaching efficiency were increased by 5.18-15.54%, 21.17-57.15%, and 11.61-30.18%, respectively. The effect of water retention and salt inhibition on loamy sand was the best when the CMC dosage was 0.6 g/ kg. In conclusion, the results provide a theoretical basis for the rational application of CMC to improve saline-alkali soil in arid areas.

Keywords: ionized cellulose adhesive; salt leaching; soil infiltration; soil quality improvement; soil water movement.