5-Fluorouracil and Curcumin Combination Coated with Pectin and Its Strategy towards Titanium Dioxide, Dimethylhydrazine Colorectal Cancer Model with the Evaluation of the Blood Parameters

Polymers (Basel). 2022 Jul 14;14(14):2868. doi: 10.3390/polym14142868.

Abstract

Colorectal cancer is considered the third most common cancer and the second leading cause of death globally. It has been proven that titanium dioxide nanoparticles produce oxidative stress and can lead to chronic inflammation, which could turn into diseases like cancer, cardiovascular disorders, diabetes, and so on. To evaluate the effect of 5-fluorouracil (5-FU) curcumin (CUR) conjugate coated with pectin on colorectal cancer induced by titanium dioxide nanoparticles (TiO2-NPs) and dimethylhydrazine (DMH), male rats were administered TiO2-NPs (5 mg/kg) orally and DMH (1 mg/kg) peritoneally for 70 days and treated with 5-FU (60 mg/kg) and CUR (240 mg/kg) conjugate (1:4 ratio) coated with pectin. The bodyweight of the animals was evaluated, and the blood sugar level was calculated. Further blood and plasma analyses were conducted. Hematological parameters, antioxidant parameters, and biochemical estimation were taken into consideration. The TiO2-NPs level in the blood and colorectal region was also calculated. With the induction of colon cancer using TiO2-NPs and DMH, a significant increase in the body weight of the animals was seen; eventually, with treatment, it was reduced. The bodyweight increase was due to an increase in the blood sugar level. There were also significant changes in the hematological parameters and biochemical estimation reports when comparing those of the positive control, negative control, and treated groups. No significant effect on biochemical estimation reports was seen. Conclusions: These reports suggest that 5-FU CUR conjugate coated with pectin helps in the management of colorectal cancer induced by TiO2-NPs and DMH.

Keywords: 5-fluorouracil; colorectal cancer; curcumin; dimethylhydrazine; pectin; titanium dioxide nanoparticles.

Grants and funding

This work was funded by the Researchers Support Project Number (RSP-2021/339), King Saud University, Riyadh, Saudi Arabia. This work was funded by the research grant of Yeungnam University, Gyeongsan, Korea.