Nanoparticles and Plant By-Products for Edible Coatings Production: A Case Study with Zinc, Titanium, and Silver

Polymers (Basel). 2022 Jul 12;14(14):2837. doi: 10.3390/polym14142837.

Abstract

For the development of functional edible packaging that will not lead to rejection by the consumer, it is needed to analyze the interactions between ingredients in the packaging matrix. The aim of this study was to develop edible chitosan-based coatings that have been enriched with red grape extracts, zinc, silver, and titanium nanoparticles. The organoleptic properties of the produced edible packaging were described by quantitative descriptive analysis and consumer acceptability was verified by hedonic analysis. By image analysis, color parameters in the CIELab system, opacity, Whiteness and Yellowness Index were described. The microstructure was described by scanning electron microscopy. The hedonic evaluation revealed that the addition of nanometals and their increasing concentration caused a deterioration in sample acceptability. The overall evaluation was higher than 5 in 50% of the samples containing nanometals. The addition of nanometals also caused statistically significant changes in L*, a*, and b* values. The sample transparency generally decreased with the increasing concentration of nanoparticle addition. Scanning electron microscopy showed, that the addition of nanometals does not disrupt the protective function of the packaging. From a sensory point of view, the addition of ZnO nanoparticles in concentrations of 0.05 and 0.2% appeared to be the most favorable of all nanometals.

Keywords: CIELab; nanoparticles; packaging; plant extract; scanning electron microscopy; sensory properties.

Grants and funding