Assessing Silicon-Mediated Growth Performances in Contrasting Rice Cultivars under Salt Stress

Plants (Basel). 2022 Jul 13;11(14):1831. doi: 10.3390/plants11141831.

Abstract

Silicon (Si) application has great potential to improve salt tolerance in a variety of crop plants. However, it is unclear how Si influences the responses of contrasting rice cultivars when exposed to excessive salt. Here, we investigated the functions of Si in alleviating the negative effects of salt stress on two contrasting rice cultivars, namely BRRI dhan48 (salt-sensitive) and Binadhan-10 (salt-tolerant). Rice seedlings was pre-treated with three doses of Si (as silicic acid; 0, 1 and 2 mM) for 14 days at one-day interval before being exposed to salt stress (10 dSm-1) in a sustained water bath system. The results demonstrated that the seedlings of BRRI dhan48 and Binadhan-10, respectively exhibited substantial reductions in shoot height (16 and 9%), shoot fresh weight (64 and 43%) and shoot dry weight (50 and 39%) under salinity. Intriguingly, BRRI dhan48 pre-treated with 1 and 2 mM Si, respectively, showed a higher increase in shoot height (SH) (by 25.90 and 26.08%) as compared with Binadhan-10 (by 3 and 8%) under salt stress compared with their respective controls. Data revealed that a comparatively higher improvement in the growth performances of the salt-induced Si pre-treated BRRI dhan48 than that of Binadhan-10. For example, 1 and 2 mM of Si treatments significantly attributed to elevated leaf relative water content (RWC) (13 and 22%), proline (138 and 165%), chlorophyll a (42 and 44%), chlorophyll b (91 and 72%), total chlorophyll (58 and 53%) and carotenoids (33 and 29%), and recovery in the reductions of electrolyte leakage (13 and 21%), malondialdehyde content (23 and 30%) and shoot Na+/K+ ratio (22 and 52%) in BRRI dhan48 compared with Si-untreated control plants under salt stress. In addition, we found salt-tolerant Binadhan-10 also had enhanced RWC (9 and 19%), proline (12 and 26%) with pre-treatment with 1 and 2 mM of Si, respectively, under salt stress, while no significant differences were noticed in the case of photosynthetic pigments and Na+/K+ ratio. Our results showed that Si supplementation potentiated higher salt-tolerance ability in the salt-sensitive BRRI dhan48 as compared with salt-tolerant Binadhan-10. Thus, Si application could be highly beneficial in the growth recovery of the salinity-affected salt-sensitive high yielding rice cultivars in the saline-prone areas.

Keywords: electrolyte leakage; proline; rice; salinity; silicon.