Design and Synthesis of New Pyrimidine-Quinolone Hybrids as Novel h LDHA Inhibitors

Pharmaceuticals (Basel). 2022 Jun 24;15(7):792. doi: 10.3390/ph15070792.

Abstract

A battery of novel pyrimidine-quinolone hybrids was designed by docking scaffold replacement as lactate dehydrogenase A (hLDHA) inhibitors. Structures with different linkers between the pyrimidine and quinolone scaffolds (10-21 and 24−31) were studied in silico, and those with the 2-aminophenylsulfide (U-shaped) and 4-aminophenylsulfide linkers (24−31) were finally selected. These new pyrimidine-quinolone hybrids (24−31)(a−c) were easily synthesized in good to excellent yields by a green catalyst-free microwave-assisted aromatic nucleophilic substitution reaction between 3-(((2/4-aminophenyl)thio)methyl)quinolin-2(1H)-ones 22/23(a−c) and 4-aryl-2-chloropyrimidines (1−4). The inhibitory activity against hLDHA of the synthesized hybrids was evaluated, resulting IC50 values of the U-shaped hybrids 24−27(a−c) much better than the ones of the 1,4-linked hybrids 28−31(a−c). From these results, a preliminary structure−activity relationship (SAR) was established, which enabled the design of novel 1,3-linked pyrimidine-quinolone hybrids (33−36)(a−c). Compounds 35(a−c), the most promising ones, were synthesized and evaluated, fitting the experimental results with the predictions from docking analysis. In this way, we obtained novel pyrimidine-quinolone hybrids (25a, 25b, and 35a) with good IC50 values (<20 μM) and developed a preliminary SAR.

Keywords: docking; fragment-based drug design; hLDHA inhibitors; pyrimidines; quinolones.