Molecular Epidemiology and Baseline Resistance of Hepatitis C Virus to Direct Acting Antivirals in Croatia

Pathogens. 2022 Jul 19;11(7):808. doi: 10.3390/pathogens11070808.

Abstract

Molecular epidemiology of hepatitis C virus (HCV) is exceptionally complex due to the highly diverse HCV genome. Genetic diversity, transmission dynamics, and epidemic history of the most common HCV genotypes were inferred by population sequencing of the HCV NS3, NS5A, and NS5B region followed by phylogenetic and phylodynamic analysis. The results of this research suggest high overall prevalence of baseline NS3 resistance associate substitutions (RAS) (33.0%), moderate prevalence of NS5A RAS (13.7%), and low prevalence of nucleoside inhibitor NS5B RAS (8.3%). Prevalence of RAS significantly differed according to HCV genotype, with the highest prevalence of baseline resistance to NS3 inhibitors and NS5A inhibitors observed in HCV subtype 1a (68.8%) and subtype 1b (21.3%), respectively. Phylogenetic tree reconstructions showed two distinct clades within the subtype 1a, clade I (62.4%) and clade II (37.6%). NS3 RAS were preferentially associated with clade I. Phylogenetic analysis demonstrated that 27 (9.0%) HCV sequences had a presumed epidemiological link with another sequence and classified into 13 transmission pairs or clusters which were predominantly comprised of subtype 3a viruses and commonly detected among intravenous drug users (IDU). Phylodynamic analyses highlighted an exponential increase in subtype 1a and 3a effective population size in the late 20th century, which is a period associated with an explosive increase in the number of IDU in Croatia.

Keywords: direct acting antivirals; epidemiology; genotypes; hepatitis C virus; intravenous drug users; phylodynamics; phylogenetics; resistance associated substitutions; subtypes.