A Durable Magnetic Superhydrophobic Melamine Sponge: For Solving Complex Marine Oil Spills

Nanomaterials (Basel). 2022 Jul 20;12(14):2488. doi: 10.3390/nano12142488.

Abstract

The problem of offshore oil leakage has wreaked havoc on the environment and people’s health. A simple and environmentally friendly impregnation method combined with marine mussel bionics was used to address this issue. Using the viscosity of polydopamine (PDA), nano- Fe3O4 and WS2 adhered to the framework of the melamine sponge (MS), and then the magnetic sponge was modified with n-octadecanethiol (OTD), and finally the superhydrophobic magnetic melamine sponge (mMS) was prepared. The modified sponge has superhydrophobicity (WCA, 156.8° ± 1.18°), high adsorbability (40~100 g°g−1), recyclability (oil adsorbability remains essentially unchanged after 25 cycles), efficient oil−water separation performance (>98%), and can quickly separate oil on the water’s surface and underwater. Furthermore, the modified sponge exhibits excellent stability and durability under harsh operating conditions such as strong sunlight, strong acid, strong alkali, and high salt, and can control the direction of the sponge’s movement by loading a magnetic field. To summarize, mMS has many potential applications as a new magnetic adsorption material for dealing with complex offshore oil spill events.

Keywords: melamine sponge; nano-particles; oil–water separation; polydopamine; superyhydrophobicity.