Photo- and Radiofrequency-Induced Heating of Photoluminescent Colloidal Carbon Dots

Nanomaterials (Basel). 2022 Jul 15;12(14):2426. doi: 10.3390/nano12142426.

Abstract

Nitrogen- and oxygen-containing carbon nanoparticles (O, N-CDs) were prepared by a facile one-step solvothermal method using urea and citric acid precursors. This method is cost-effective and easily scalable, and the resulting O, N-CDs can be used without additional functionalization and sample pretreatment. The structure of O, N-CDs was characterized by TEM, AFM, Raman, UV-vis, and FTIR spectroscopies. The obtained O, N-CDs with a mean diameter of 4.4 nm can be easily dispersed in aqueous solutions. The colloidal aqueous solutions of O, N-CDs show significant photothermal responses under red-IR and radiofrequency (RF) irradiations. The as-prepared O, N-CDs have a bright temperature-dependent photoluminescence (PL). PL/PLE spectral maps were shown to be used for temperature evaluation purposes in the range of 30-50 °C. In such a way, the O, N-CDs could be used for biomedicine-related applications such as hyperthermia with simultaneous temperature estimation with PL imaging.

Keywords: O, N-containing CDs; nanocolloids for photothermal and radiofrequency therapy; photo- and radiofrequency-induced heating; photoluminescent thermometry; photothermal effects.