Free Convection and Heat Transfer in Porous Ground Massif during Ground Heat Exchanger Operation

Materials (Basel). 2022 Jul 12;15(14):4843. doi: 10.3390/ma15144843.

Abstract

Heat pumps are the ideal solution for powering new passive and low-energy buildings, as geothermal resources provide buildings with heat and electricity almost continuously throughout the year. Among geothermal technologies, heat pump systems with vertical well heat exchangers have been recognized as one of the most energy-efficient solutions for space heating and cooling in residential and commercial buildings. A large number of scientific studies have been devoted to the study of heat transfer in and around the ground heat exchanger. The vast majority of them were performed by numerical simulation of heat transfer processes in the soil massif-heat pump system. To analyze the efficiency of a ground heat exchanger, it is fundamentally important to take into account the main factors that can affect heat transfer processes in the soil and the external environment of vertical ground heat exchangers. In this work, numerical simulation methods were used to describe a mathematical model of heat transfer processes in a porous soil massif and a U-shaped vertical heat exchanger. The purpose of these studies is to determine the influence of the filtration properties of the soil as a porous medium on the performance characteristics of soil heat exchangers. To study these problems, numerical modeling of hydrodynamic processes and heat transfer in a soil massif was performed under the condition that the pores were filled only with liquid. The influence of the filtration properties of the soil as a porous medium on the characteristics of the operation of a soil heat exchanger was studied. The dependence of the energy characteristics of the operation of a soil heat exchanger and a heat pump on a medium with which the pores are filled, as well as on the porosity of the soil and the size of its particles, was determined.

Keywords: filtration; ground heat exchanger; heat pump; numerical simulation; porous medium; soil.

Grants and funding

This research received no external funding.