Microwave Treatment of Calcium Phosphate/Titanium Dioxide Composite to Improve Protein Adsorption

Materials (Basel). 2022 Jul 7;15(14):4773. doi: 10.3390/ma15144773.

Abstract

Calcium phosphate has attracted enormous attention as a bone regenerative material in biomedical fields. In this study, we investigated the effect of microwave treatment on calcium phosphate deposited TiO2 nanoflower to improve protein adsorption. Hierarchical rutile TiO2 nanoflowers (TiNF) fabricated by a hydrothermal method were soaked in modified simulated body fluid for 3 days to induce calcium phosphate (CAP) formation, followed by exposure to microwave radiation (MW). Coating the dental implants with CAP/TiNF provides a means of improving the biological properties, as the structure, morphology, and thickness of the composites can be controlled. The composites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), field emission transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FTIR), respectively. The composites were identified to be composed of aggregated nano-sized particles with sphere-like shapes, and the calcium phosphate demonstrated low crystallinity. The ability of bovine serum albumin (BSA) to adsorb on MW-treated CAP/TiNF composites was studied as a function of BSA concentration. The Sips isotherm was used to analyze the BSA adsorption on MW-treated CAP/TiNF composites. The MW-treated samples showed high protein adsorption capacity, thereby indicating their potential in various biomedical applications.

Keywords: TiO2 nanoflower; bovine serum albumin; calcium phosphate; microwave treatment; protein adsorption.