Chitin Synthase Genes Are Differentially Required for Growth, Stress Response, and Virulence in Verticillium dahliae

J Fungi (Basel). 2022 Jun 28;8(7):681. doi: 10.3390/jof8070681.

Abstract

Crop wilt disease caused by Verticillium dahliae usually leads to serious yield loss. Chitin, an important component of most fungal cell walls, functions to maintain the rigidity of cell walls and septa. Chitin synthesis mainly relies on the activity of chitin synthase (CHS). Eight CHS genes have been predicted in V. dahliae. In this study, we characterized the functions of these genes in terms of growth, stress responses, penetration, and virulence. Results showed that VdCHS5 is important for conidia germination and resistance to hyperosmotic stress. Conidial production is significantly decreased in Vdchs1, Vdchs4, and Vdchs8 mutants. VdCHS1, VdCHS2, VdCHS4, VdCHS6, VdCHS7, and VdCHS8 genes are important for cell wall integrity, while all mutants are important for cell membrane integrity. All of the VdCHS genes, except for VdCHS3, are required for the full pathogenicity of V. dahliae to Arabidopsis thaliana and cotton plants. The in vitro and in vivo penetration of Vdchs1, Vdchs4, Vdchs6, and Vdchs7 mutants was impaired, while that of the other mutants was normal. Overall, our results indicate that the VdCHS genes exert diverse functions to regulate the growth and development, conidial germination, conidial production, stress response, penetration, and virulence in V. dahliae.

Keywords: Verticillium; chitin synthase; stress; virulence.