Biology and Rearing of an Emerging Sugar Beet Pest: The Planthopper Pentastiridius leporinus

Insects. 2022 Jul 21;13(7):656. doi: 10.3390/insects13070656.

Abstract

The rapid spread of the bacterial yellowing disease Syndrome des Basses Richesses (SBR) has a major impact on sugar beet (Beta vulgaris) cultivation in Germany, resulting in significant yield losses. SBR-causing bacteria are transmitted by insects, mainly the Cixiid planthopper Pentastiridius leporinus. However, little is known about the biology of this emerging vector, including its life cycle, oviposition, developmental stages, diapauses, and feeding behavior. Continuous mass rearing is required for the comprehensive analysis of this insect. Here we describe the development of mass rearing techniques for P. leporinus, allowing us to investigate life cycle and ecological traits, such as host plant choice, in order to design agronomic measures that can interrupt the life cycle of nymphs in the soil. We also conducted field studies in recently-infected regions of Rhineland-Palatinate and south Hesse, Germany, to study insect mobility patterns and abundance at four locations during two consecutive years. The soil-depth monitoring of nymphs revealed the movement of the instars through different soil layers. Finally, we determined the prevalence of SBR-causing bacteria by designing TaqMan probes specific for two bona fide SBR pathogens: Candidatus Arsenophonus phytopathogenicus (Gammaproteobacteria) and Candidatus Phytoplasma solani (stolbur phytoplasma). Our data suggest that P. leporinus is spreading northward and eastward in Germany, additionally, the abundance of SBR-carrying planthoppers is increasing. Interestingly, P. leporinus does not appear to hibernate during winter, and is polyphagous as a nymph. Stolbur phytoplasma has a significant impact on SBR pathology in sugar beet.

Keywords: Beta vulgaris; Cixiidae; Pentastiridius leporinus; SBR; monitoring; proteobacteria; rearing; stolbur phytoplasma; sugar beet.