Dual-Energy CT for the Detection of Portal Vein Thrombosis: Improved Diagnostic Performance Using Virtual Monoenergetic Reconstructions

Diagnostics (Basel). 2022 Jul 10;12(7):1682. doi: 10.3390/diagnostics12071682.

Abstract

Purpose: To investigate the diagnostic performance of noise-optimized virtual monoenergetic images (VMI+) in dual-energy CT (DECT) of portal vein thrombosis (PVT) compared to standard reconstructions. Method: This retrospective, single-center study included 107 patients (68 men; mean age, 60.1 ± 10.7 years) with malignant or cirrhotic liver disease and suspected PVT who had undergone contrast-enhanced portal-phase DECT of the abdomen. Linearly blended (M_0.6) and virtual monoenergetic images were calculated using both standard VMI and noise-optimized VMI+ algorithms in 20 keV increments from 40 to 100 keV. Quantitative measurements were performed in the portal vein for objective contrast-to-noise ratio (CNR) calculation. The image series showing the greatest CNR were further assessed for subjective image quality and diagnostic accuracy of PVT detection by two blinded radiologists. Results: PVT was present in 38 subjects. VMI+ reconstructions at 40 keV revealed the best objective image quality (CNR, 9.6 ± 4.3) compared to all other image reconstructions (p < 0.01). In the standard VMI series, CNR peaked at 60 keV (CNR, 4.7 ± 2.1). Qualitative image parameters showed the highest image quality rating scores for the 60 keV VMI+ series (median, 4) (p ≤ 0.03). The greatest diagnostic accuracy for the diagnosis of PVT was found for the 40 keV VMI+ series (sensitivity, 96%; specificity, 96%) compared to M_0.6 images (sensitivity, 87%; specificity, 92%), 60 keV VMI (sensitivity, 87%; specificity, 97%), and 60 keV VMI+ reconstructions (sensitivity, 92%; specificity, 97%) (p ≤ 0.01). Conclusions: Low-keV VMI+ reconstructions resulted in significantly improved diagnostic performance for the detection of PVT compared to other DECT reconstruction algorithms.

Keywords: diagnostic imaging; liver; multidetector computed tomography; portal vein; thrombosis.

Grants and funding

This research received no external funding.