Bayesian Depth-Wise Convolutional Neural Network Design for Brain Tumor MRI Classification

Diagnostics (Basel). 2022 Jul 7;12(7):1657. doi: 10.3390/diagnostics12071657.

Abstract

In recent years, deep learning has been applied to many medical imaging fields, including medical image processing, bioinformatics, medical image classification, segmentation, and prediction tasks. Computer-aided detection systems have been widely adopted in brain tumor classification, prediction, detection, diagnosis, and segmentation tasks. This work proposes a novel model that combines the Bayesian algorithm with depth-wise separable convolutions for accurate classification and predictions of brain tumors. We combine Bayesian modeling learning and Convolutional Neural Network learning methods for accurate prediction results to provide the radiologists the means to classify the Magnetic Resonance Imaging (MRI) images rapidly. After thorough experimental analysis, our proposed model outperforms other state-of-the-art models in terms of validation accuracy, training accuracy, F1-score, recall, and precision. Our model obtained high performances of 99.03% training accuracy and 94.32% validation accuracy, F1-score, precision, and recall values of 0.94, 0.95, and 0.94, respectively. To the best of our knowledge, the proposed work is the first neural network model that combines the hybrid effect of depth-wise separable convolutions with the Bayesian algorithm using encoders.

Keywords: Bayesian algorithm; deep learning; depth-wise separable convolution; magnetic resonance imaging (MRI).