Resistance to Obesity in SOD1 Deficient Mice with a High-Fat/High-Sucrose Diet

Antioxidants (Basel). 2022 Jul 19;11(7):1403. doi: 10.3390/antiox11071403.

Abstract

Metabolic syndrome (Mets) is an important condition because it may cause stroke and heart disease in the future. Reactive oxygen species (ROSs) influence the pathogenesis of Mets; however, the types of ROSs and their localization remain largely unknown. In this study, we investigated the effects of SOD1, which localize to the cytoplasm and mitochondrial intermembrane space and metabolize superoxide anion, on Mets using SOD1 deficient mice (SOD1-/-). SOD1-/- fed on a high-fat/high-sucrose diet (HFHSD) for 24 weeks showed reduced body weight gain and adipose tissue size compared to wild-type mice (WT). Insulin secretion was dramatically decreased in SOD1-/- fed on HFHSD even though blood glucose levels were similar to WT. Ambulatory oxygen consumption was accelerated in SOD1-/- with HFHSD; however, ATP levels of skeletal muscle were somewhat reduced compared to WT. Reflecting the reduced ATP, the expression of phosphorylated AMPK (Thr 172) was more robust in SOD1-/-. SOD1 is involved in the ATP production mechanism in mitochondria and may contribute to visceral fat accumulation by causing insulin secretion and insulin resistance.

Keywords: AMPK; ATP; SOD1; insulin secretion; metabolic syndrome; mitochondrial intermembrane space; oxygen consumption; superoxide anion.