Applications of a novel electron energy filter combined with a hybrid-pixel direct electron detector for the analysis of functional oxides by STEM/EELS and energy-filtered imaging

Micron. 2022 Sep:160:103331. doi: 10.1016/j.micron.2022.103331. Epub 2022 Jul 21.

Abstract

The performance and suitability of a new electron energy filter in combination with a hybrid pixel, direct electron detector for analytical (scanning) transmission electron microscopy are demonstrated using four examples. The STEM-EELS capabilities of the CEOS Energy Filtering and Imaging Device (CEFID) were tested with focus on weak signals and high spatio-temporal resolution. A multiferroic, multilayer structure of REMnO3 (RE = Yb, Er, Tb, Y), grown on yttria-stabilized zirconia (YSZ), is used to exemplify that this new instrumental setup produces valuable electron energy-loss spectroscopy (EELS) data at high energy losses even when using short acquisition times, providing detailed chemical information about the interfaces in this complex multilayer sample. Another functional oxide, namely a ferromagnetic La2NiMnO6 thin film grown on SrTiO3, demonstrates that atomically resolved spectrum images can be recorded, using short dwell times and moderate beam currents in order to warrant the integrity of the sample. In a third example, inhomogeneously Er-doped YSZ shows by EELS spectrum imaging that elements at low concentrations can be detected semi-quantitatively, uncovering the expected layered Er distribution but revealing substantial interdiffusion. In a final example, we simply demonstrate that the hybrid pixel detector in combination with the energy filter can also be used for energy-filtered imaging and thus for elemental mapping complementary to EELS in scanning transmission mode.

Keywords: Analytical scanning transmission electron microscopy; Electron energy-loss spectroscopy (EELS); Energy filter; Energy-filtered imaging (EFI); Functional oxides; Hybrid-pixel, direct electron detector.