Adsorption of Cr6+ ion using activated Pisum sativum peels-triethylenetetramine

Environ Sci Pollut Res Int. 2022 Dec;29(60):91036-91060. doi: 10.1007/s11356-022-21957-6. Epub 2022 Jul 26.

Abstract

The adsorption of Cr6+ ions from water-soluble solution onto activated pea peels (PPs) embellished with triethylenetetramine (TETA) was studied. The synthesized activated TETA-PP biosorbent was further characterized by SEM together with EDX, FTIR and BET to determine the morphology and elementary composition, functional groups (FGs) present and the biosorbent surface area. The confiscation of Cr6+ ions to activated TETA-PP biosorbent was observed to be pH-reliant, with optimum removal noticed at pH 1.6 (99%). Cr6+ ion adsorption to activated TETA-PP biosorbent was well defined using the Langmuir (LNR) and the pseudo-second-order (PSO) models, with a determined biosorption capacity of 312.50 mg/g. Also, it was found that the activated TETA-PP biosorbent can be restored up to six regeneration cycles for the sequestration of Cr6+ ions in this study. In comparison with other biosorbents, it was found that this biosorbent was a cost-effective and resourceful agro-waste for the Cr6+ ion confiscation. The possible mechanism of Cr6+ to the biosorbent was by electrostatic attraction following the surface protonation of the activated TETA-PP biosorbent sites.

Keywords: Aquatic environment; Cr6+ removal; Pea peels; Pollution; Water treatment.

MeSH terms

  • Pisum sativum*
  • Trientine*

Substances

  • Trientine