Vegetative Insecticidal Protein Vip3Aa Is Transported via Membrane Vesicles in Bacillus thuringiensis BMB171

Toxins (Basel). 2022 Jul 13;14(7):480. doi: 10.3390/toxins14070480.

Abstract

Vegetative insecticidal protein Vip3Aa, secreted by many Bacillus thuringiensis (Bt) strains during the vegetative growth stage, represents the second-generation insecticidal toxin. In recent years, significant progress has been made on its structure and action mechanism. However, how it is translocated across the cytoplasmic membrane into the environment remains a mystery. This work demonstrates that Vip3Aa is not secreted by the General Secretion (Sec) System. To reveal the secretory pathway of Vip3A, we purified the membrane vesicles (MVs) of B. thuringiensis BMB171 and observed by TEM. The size of MVs was determined by the dynamic light scattering method, and their diameter was approximately 40-200 nm, which is consistent with the vesicles in Gram-negative bacteria. Moreover, Vip3A could be detected in the purified MVs by Western blot, and immunoelectron microscopy reveals Vip3A antibody-coated gold particles located in the MVs. After deleting its signal peptide, chitinase B (ChiB) failed to be secreted. However, the recombinant ChiB, whose signal peptide was substituted with the N-terminal 39 amino acids from Vip3A, was secreted successfully through MVs. Thus, this sequence is proposed as the signal region responsible for vesicle transport. Together, our results revealed for the first time that Vip3Aa is transported to the medium via MVs.

Keywords: Bacillus thuringiensis; Vip3Aa; membrane vesicles; protein secretion.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bacillus thuringiensis* / metabolism
  • Bacterial Proteins / metabolism
  • Biological Transport
  • Insecticides* / chemistry
  • Larva / metabolism
  • Protein Sorting Signals

Substances

  • Bacterial Proteins
  • Insecticides
  • Protein Sorting Signals

Grants and funding

This study was research was funded by the National Key R&D Program of China (No. 2017YFD0200400), and the National Natural Science Foundation of China (No. 31371979).