Self-Assembled 4-Aminopyridine Monolayer as a Nucleation-Inducing Layer for Transparent Silver Electrodes

ACS Appl Mater Interfaces. 2022 Aug 3;14(30):35167-35176. doi: 10.1021/acsami.2c05191. Epub 2022 Jul 25.

Abstract

The role of a self-assembled monolayer obtained by vacuum deposition of 4-aminopyridine (4-AP), a small organic molecule having amine and pyridine groups, as a metal nucleation inducer and adhesion promoter was verified, and the applicability was evaluated. 4-AP deposited to an extremely thin thickness effectively changed the substrate surface properties, increasing the nucleation density of silver (Ag) more than 3 times and eventually forming a more transparent, low-resistance Ag thin film. The optical transmittance of the Ag thin film, which was less than 60% when 4-AP was not applied, could be increased to about 77% by simply applying 4-AP, and the electrical resistance could be lowered from 37 to 14 Ω/square at the same time. Transmittance could be further improved to higher than 90% by depositing an antireflection layer for use as a transparent Ag electrode. It was also verified that 4-AP not only serves as a nucleation inducer but also contributes to improving interfacial adhesion. The Ag transparent electrode using 4-AP provided the improved performance of the organic light-emitting device due to higher transmittance, lower resistance, and surface roughness. Small organic molecules including functional groups that can be vacuum deposited, such as 4-AP, are expected to be used as surface pretreatment materials for various depositions because they can be easily patterned and can efficiently modify the surface even with extremely thin thickness.

Keywords: 4-aminopyridine; metal nucleation inducer; self-assembled monolayer; transparent electrode; ultrathin metal film.