Impact of pre-pandemic travel mobility patterns on the spatial diffusion of COVID-19 in South Korea

J Transp Health. 2022 Sep:26:101479. doi: 10.1016/j.jth.2022.101479. Epub 2022 Jul 18.

Abstract

Introduction: Physical mobility is critical for the spread of infectious diseases in humans. However, few studies have conducted empirical investigations on the impact of pre-pandemic travel mobility patterns on the diffusion of coronavirus disease 2019 (COVID-19). Therefore, this study examines its impact at the city-county level on the diffusion by the wave period during the two-year pandemic in South Korea.

Methods: This study first employs factor analysis by using the travel origin-destination data by travel mode at the county level as of 2019 to derive pre-pandemic travel mobility patterns. Next, the study identifies how they had affected the diffusion of COVID-19 over time by employing the negative binomial regression models on confirmed COVID-19 cases for each wave, including the entire pandemic period.

Results: The study derived five pre-pandemic mobility patterns: 1) rail-oriented mobility, 2) intra-county bus-oriented mobility, 3) road-oriented mobility, 4) high-speed rail-oriented mobility, and 5) inter-county bus-oriented mobility. Among them, the biggest risk to the diffusion of COVID-19 was the rail-oriented mobility before the pandemic if controlling such measures as accessibility, physical environment, and demographic and socioeconomic indicators. In addition, the order of the magnitudes for the impact of pre-pandemic travel mobility factors on its spatial diffusion had not changed during experiencing the three different wave periods during the two-year pandemic in South Korea.

Conclusions: The study concludes that the rail-oriented travel mobility pattern before the pandemic could pose the greatest threat factor to the spatial spread of COVID-19 at any scale and time. Policymakers should develop strategies to prevent the spatial spread of COVID-19 by reducing human mobility for daily living in areas with strong rail mobility patterns formed before the pandemic.

Keywords: COVID-19 cases; Disease transmission; Negative binomial regression model; Pre-pandemic travel mobility; Urban vulnerability.