Fimbristylis ovata and Artemisia vulgaris extracts inhibited AGE-mediated RAGE expression, ROS generation, and inflammation in THP-1 cells

Toxicol Res. 2022 Jan 30;38(3):331-343. doi: 10.1007/s43188-021-00114-0. eCollection 2022 Jul.

Abstract

Advanced glycation end products (AGEs) can induce inflammatory signaling pathways through the receptor for AGEs (RAGE). Targeting RAGE could be a therapeutic strategy for treating chronic inflammation mediated by the AGE-RAGE axis. This study aimed to investigate the effects of Fimbristylis ovata and Artemisia vulgaris extracts on AGE-RAGE signaling and AGE-mediated oxidative stress and inflammation in THP-1 cells. F. ovata and A. vulgaris were extracted by a Soxhlet extraction, and antioxidant capacity was evaluated using DPPH and ABTS assays. The human monocytic cell line THP-1 was treated with AGE (600 µg/ml) with and without F. ovata and A. vulgaris extracts (100 µg/ml). The mitochondria-targeting antioxidant MitoQ (2 μg/ml) was used as a positive control. Cell viability, ROS generation, RAGE, AGE-RAGE signaling pathway components, and inflammatory cytokine levels were analyzed. F. ovata and A. vulgaris extracts showed antioxidative effects in non-cell-based assays. Treatment of THP-1 cells with AGE significantly increased the protein levels of RAGE and significantly increased the mRNA expression of cytokines, including TNF-α, IL-1β, and IL-6. AGEs induced the generation of ROS and levels of signaling molecules downstream of RAGE, including phosphorylated and total Erk1/2, JNK, and p38 MAPK, although not significantly. F. ovata and A. vulgaris extracts significantly decreased the protein levels of RAGE and significantly decreased the mRNA levels of cytokines. In conclusion, this study revealed that F. ovata and A. vulgaris extracts exert anti-inflammatory effects through the AGE-RAGE axis. However, details on this anti-inflammatory effect through AGE-RAGE signaling should be further investigated.

Supplementary information: The online version contains supplementary material available at 10.1007/s43188-021-00114-0.

Keywords: AGE-RAGE signaling; Artemisiavulgaris; Fimbristylisovata; Inflammation; Oxidative stress.