Effect of binder system on the thermophysical properties of 3D-printed zirconia ceramics

Int J Appl Ceram Technol. 2022 Jan-Feb;19(1):174-180. doi: 10.1111/ijac.13806. Epub 2021 Jun 30.

Abstract

Fabrication of 3D-printed ceramic parts with high complexity and high spatial resolution often demands low wall thickness as well as high stiffness at the green state, whereas printing simpler geometries may tolerate thicker, more compliant walls with the advantage of a rapid binder-burn-out and sintering process. In this work, the influence of the binder system on the thermophysical properties of 3D-printed stabilized zirconia ceramics was investigated. Samples were fabricated with the lithography-based ceramic manufacturing (LCM) technology using two different photosensitive ceramic suspensions (LithaCon 3Y230 and LithaCon 3Y210), with the same ZrO2 powder. A significant difference in stiffness in the green state (~3 MPa vs. ~32 MPa for LithaCon 3Y230 and LithaCon 3Y210, respectively) was measured, associated with a rather loose or a linked network formed in the binder due to photopolymerization. Both materials reached high relative densities, that is, >99%, exhibiting a homogeneous fine-grained microstructure. No significant differences on the coefficient of thermal expansion (11.18 ppm/K vs. 11.17 ppm/K) or Young's modulus (207 GPa vs. 205 GPa) were measured, thus demonstrating the potential of tailoring binder systems to achieve the required accuracy in 3D-printed parts, without detrimental effects on material's microstructure and thermophysical properties at the sintered state.

Keywords: binders/binding; ceramic 3D‐printing; density; lithography‐based ceramic manufacturing; microstructure; polymers/polymerization; zirconia: yttria stabilized.