Surface Coating of NCM-811 Cathode Materials with g-C3N4 for Enhanced Electrochemical Performance

ACS Omega. 2022 Jul 5;7(28):24851-24857. doi: 10.1021/acsomega.2c03074. eCollection 2022 Jul 19.

Abstract

Li(Ni0.8, Co0.1, Mn0.1)O2 (NCM-811) cathode materials have been commercialized recently, aiming to increase the specific capacity and specific energy of the lithium-ion battery for practical applications in electric vehicles. The surface coating has been proved to be an effective approach for the stabilization of NCM-based cathodes, which could reduce the structural instability and prevent surface reactions between the cathode materials and electrolytes. Herein, we demonstrate the facile synthesis of graphitic carbon nitride (g-C3N4)-coated NCM cathodes with both the sonication-assisted liquid exfoliation method (g-C3N4NS@NCM-811) and chemical vapor-assisted coating method (g-C3N4@NCM-811). It is discovered that coating with a thin g-C3N4 layer could reduce the impedance of the NCM-811 cathode material, as well as increase the cycle stability of the cathode material, leading to increased capacity retention from 130 mA h/g (for the pristine sample) to 140 mA h/g after 225 cycles. While the coating of thick g-C3N4 nanosheets could hinder the lithium intercalation, resulting in significant loss of specific capacity. This study paves the way toward practical applications of the g-C3N4-coated NCM-811 cathode materials.