Preparation, characterization and stability of nanoliposomes loaded with peptides from defatted walnut (Juglans regia L.) meal

J Food Sci Technol. 2022 Aug;59(8):3180-3191. doi: 10.1007/s13197-022-05372-w. Epub 2022 Feb 18.

Abstract

This study aimed to encapsulate walnut peptides with different molecular weights (crude peptides, 5-10 kDa and < 5 kDa) within nanoliposomes. The peptides with molecular weight (MW) of 5-10 kDa (F2) was chosen as a representative sample to indicate the formation mechanism of nanoliposomes using scanning electron microscopy (SEM) and transmission electron microscope (TEM). The storage and simulated digestion experiment were carried out to evaluate the protective effect of nanoliposomes loading walnut peptides. Our results indicated that the amino acid composition was affected by peptide MW, and F2 exhibited the highest content of hydrophobic amino acids content. The MW of peptides also affected the distribution of the peptide of nanoliposomes, resulting in changes in particle size, ζ-potential, and encapsulation efficiency. The SEM exhibited that a high concentration of nanoliposomes might result in phospholipid fusion and larger particle diameters. The TEM showed individual nanoliposomes had spherical, smooth and full vesicle structures. The nanoliposomes could improve the stability of walnut peptides during storage. The maximum peptides retention after in vitro digestion was 61.6%, indicating a better sustained release in gastric digestion. The present study suggested that nanoliposomes can offer adequate protection to the walnut peptides during storage and digestion.

Keywords: Characterization; In vitro digestion; Nanoliposomes; Stability; Walnut peptides.