Artificial light at night promotes bottom-up changes in a woodland food chain

Environ Pollut. 2022 Oct 1:310:119803. doi: 10.1016/j.envpol.2022.119803. Epub 2022 Jul 20.

Abstract

Artificial light at night (ALAN) is a recognised disruptor of biological function and ecological communities. Despite increasing research effort, we know little regarding the effect of ALAN on woody plants, including trees, or its indirect effects on their colonising invertebrates. These effects have the potential to disrupt woodland food webs by decreasing the productivity of invertebrates and their secretions, including honeydew and lerps, with cascading effects on other fauna. Here, we cultivated juvenile river red gums (Eucalyptus camaldulensis) for 40 weeks under experimentally manipulated light (ALAN) or naturally dark (control) conditions. To assess direct impacts on tree growth, we took multiple measures of growth at four time periods, and also measured physiological function, biomass and investment in semi-mature trees. To assess experimentally the direct and indirect (tree-mediated) impacts of ALAN on invertebrates, from 19 weeks onwards, we matched and mismatched trees with their original ALAN environments. We colonised trees with a common herbivore of E. camaldulensis, the red gum lerp psyllid (Glycaspis nr. brimblecombei) and then measured the effects of current and historic tree lighting treatment on the psyllid life cycle. Our data revealed direct effects of ALAN on tree morphology: E. camaldulensis trees exposed to ALAN shifted biomass allocation away from roots and into leaves and increased specific leaf area. However, while the intensity of ALAN was sufficient to promote photosynthesis (net carbon gain) at night, this did not translate into variation in tree water status or photosystem adaptation to dim night-time light for ALAN-exposed trees. We found some evidence that ALAN had broad-scale community effects-psyllid nymphs colonising ALAN trees produced more lerps-but we found no other direct or indirect impacts of ALAN on the psyllid life cycle. Our results suggest that trees exposed to ALAN may share morphological responses with trees under dim daylight conditions. Further, ALAN may have significant 'bottom-up' effects on Eucalyptus woodland food webs through both trees and herbivores, which may impact higher trophic levels including woodland birds, mammals and invertebrates.

Keywords: ALAN; Artificial light; Eucalyptus; Insect development; Lerp; Photosynthesis; Plant morphology; Psyllid; Tree; Trophic; Water potential; Woodland.

MeSH terms

  • Animals
  • Eucalyptus*
  • Food Chain*
  • Forests
  • Invertebrates
  • Light
  • Light Pollution
  • Mammals
  • Trees