Modulating the strong metal-support interaction of single-atom catalysts via vicinal structure decoration

Nat Commun. 2022 Jul 22;13(1):4244. doi: 10.1038/s41467-022-31966-1.

Abstract

Metal-support interaction predominately determines the electronic structure of metal atoms in single-atom catalysts (SACs), largely affecting their catalytic performance. However, directly tuning the metal-support interaction in oxide supported SACs remains challenging. Here, we report a new strategy to subtly regulate the strong covalent metal-support interaction (CMSI) of Pt/CoFe2O4 SACs by a simple water soaking treatment. Detailed studies reveal that the CMSI is weakened by the bonding of H+, generated from water dissociation, onto the interface of Pt-O-Fe, resulting in reduced charge transfer from metal to support and leading to an increase of C-H bond activation in CH4 combustion by more than 50 folds. This strategy is general and can be extended to other CMSI-existed metal-supported catalysts, providing a powerful tool to modulating the catalytic performance of SACs.