Clutter Substantially Reduces Selectivity for Peripheral Faces in the Macaque Brain

J Neurosci. 2022 Aug 31;42(35):6739-6750. doi: 10.1523/JNEUROSCI.0232-22.2022.

Abstract

According to a prominent view in neuroscience, visual stimuli are coded by discrete cortical networks that respond preferentially to specific categories, such as faces or objects. However, it remains unclear how these category-selective networks respond when viewing conditions are cluttered, i.e., when there is more than one stimulus in the visual field. Here, we asked three questions: (1) Does clutter reduce the response and selectivity for faces as a function of retinal location? (2) Is the preferential response to faces uniform across the visual field? And (3) Does the ventral visual pathway encode information about the location of cluttered faces? We used fMRI to measure the response of the face-selective network in awake, fixating macaques (two female, five male). Across a series of four experiments, we manipulated the presence and absence of clutter, as well as the location of the faces relative to the fovea. We found that clutter reduces the response to peripheral faces. When presented in isolation, without clutter, the selectivity for faces is fairly uniform across the visual field, but, when clutter is present, there is a marked decrease in the selectivity for peripheral faces. We also found no evidence of a contralateral visual field bias when faces were presented in clutter. Nonetheless, multivariate analyses revealed that the location of cluttered faces could be decoded from the multivoxel response of the face-selective network. Collectively, these findings demonstrate that clutter blunts the selectivity of the face-selective network to peripheral faces, although information about their retinal location is retained.SIGNIFICANCE STATEMENT Numerous studies that have measured brain activity in macaques have found visual regions that respond preferentially to faces. Although these regions are thought to be essential for social behavior, their responses have typically been measured while faces were presented in isolation, a situation atypical of the real world. How do these regions respond when faces are presented with other stimuli? We report that, when clutter is present, the preferential response to foveated faces is spared but preferential response to peripheral faces is reduced. Our results indicate that the presence of clutter changes the response of the face-selective network.

Keywords: clutter; face perception; face-selective; macaque fMRI; multiple objects; periphery.