Purely Covalent Molecular Cages and Containers for Guest Encapsulation

Chem Rev. 2022 Aug 24;122(16):13636-13708. doi: 10.1021/acs.chemrev.2c00198. Epub 2022 Jul 22.

Abstract

Cage compounds offer unique binding pockets similar to enzyme-binding sites, which can be customized in terms of size, shape, and functional groups to point toward the cavity and many other parameters. Different synthetic strategies have been developed to create a toolkit of methods that allow preparing tailor-made organic cages for a number of distinct applications, such as gas separation, molecular recognition, molecular encapsulation, hosts for catalysis, etc. These examples show the versatility and high selectivity that can be achieved using cages, which is impossible by employing other molecular systems. This review explores the progress made in the field of fully organic molecular cages and containers by focusing on the properties of the cavity and their application to encapsulate guests.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Binding Sites*
  • Catalysis