High-Performance Quasi-Two-Dimensional CsPbBr2.1Cl0.9:PEABr Perovskite Sky-Blue LEDs with an Interface Modification Layer

Nanoscale Res Lett. 2022 Jul 22;17(1):66. doi: 10.1186/s11671-022-03703-6.

Abstract

This paper elucidates the increased luminescence efficiency of CsPbBr2.1Cl0.9 sky-blue perovskite light-emitting diodes (PeLEDs) achieved through the interface modification of 3,4 ethylenedioxythiophene (PEDOT):polystyrene sulfonic acid (PSS)/quasi-two-dimensional (QTD) perovskite using CsCl and CsBr materials, respectively. QTD films were fabricated using ratios of CsPbBr2.1Cl0.9 doped with phenethylamine hydrobromide (PEABr) at 60%, 80%, and 100%. The solvent dimethyl sulfide (C2H6OS) was employed under the excitation of ambient and 365-nm laser lights. The PeLED structure was composed of Al/LiF/2,2',2"-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi)/CsPbBr2.1Cl0.9:PEABr/interface modification layer/PEDOT:PSS/ITO glass. The optimized results revealed that the luminance, current efficiency, and external quantum efficiency of the QTD CsPbBr2.1Cl0.9:80% PEABr PeLED with the CsCl interface modification additive was 892 cd/m2, 3.87 cd/A, and 5.56%, respectively.

Keywords: CsPbBr2.1Cl0.9; Electron transport layer; Interface modification; PEABr; Quasi-two-dimensional Perovskites; Sky-blue LED.