Value of 68Ga-labeled bombesin antagonist (RM2) in the detection of primary prostate cancer comparing with [18F]fluoromethylcholine PET-CT and multiparametric MRI-a phase I/II study

Eur Radiol. 2023 Jan;33(1):472-482. doi: 10.1007/s00330-022-08982-2. Epub 2022 Jul 21.

Abstract

Objectives: The bombesin derivative RM2 is a GRPr antagonist with strong binding affinity to prostate cancer (PCa). In this study, the impact of [68Ga]Ga-RM2 positron emission tomography-computed tomography (PET-CT) for the detection of primary PCa was compared with that of [18F]FCH PET-CT and multiparametric magnetic resonance imaging (mpMRI).

Methods: This phase I/II study was conducted in 30 biopsy-positive PCa subjects. The patients were stratified into high (10 patients), intermediate (10 patients), and low risk (10 patients) for extraglandular metastases as defined by National Comprehensive Cancer Network (NCCN) criteria (NCCN Clinical Practice Guidelines in Oncology, 2016). The prostate gland was classified in 12 anatomic segments for data analysis of the imaging modalities as well as histopathologic findings. The segment with the highest radiotracer uptake was defined as the "index lesion." All cases were scheduled to undergo prostatectomy with pelvic lymph node (LN) dissection in intermediate- and high-risk patients. Intraprostatic and pelvic nodal [68Ga]Ga-RM2 and [18F]FCH PET-CT findings were correlated with mpMRI and histopathologic results.

Results: Of the 312 analyzed regions, 120 regions (4 to 8 lesions per patient) showed abnormal findings in the prostate gland. In a region-based analysis, overall sensitivity and specificity of [68Ga]Ga-RM2 PET-CT in the detection of primary tumor were 74% and 90%, respectively, while it was 60% and 80% for [18F]FCH PET-CT and 72% and 89% for mpMRI. Although the overall sensitivity of [68Ga]Ga-RM2 PET-CT was higher compared to that of [18F]FCH PET-CT and mpMRI, the statistical analysis showed only significant difference between [68Ga]Ga-RM2 PET-CT and [18F]FCH PET-CT in the intermediate-risk group (p = 0.01) and [68Ga]Ga-RM2 PET-CT and mpMRT in the high-risk group (p = 0.03). In the lesion-based analysis, there was no significant difference between SUVmax of [68Ga]Ga-RM2 and [18F]FCH PET-CT in the intraprostatic malignant lesions ([68Ga]Ga-RM2: mean SUVmax: 5.98 ± 4.13, median: 4.75; [18F]FCH: mean SUVmax: 6.08 ± 2.74, median: 5.5; p = 0.13).

Conclusions: [68Ga]Ga-RM2 showed promising PET tracer for the detection of intraprostatic PCa in a cohort of patients with different risk stratifications. However, significant differences were only found between [68Ga]Ga-RM2 PET-CT and [18F]FCH PET-CT in the intermediate-risk group and [68Ga]Ga-RM2 PET-CT and mpMRT in the high-risk group. In addition, GRP-R-based imaging seems to play a complementary role to choline-based imaging for full characterization of PCa extent and biopsy guidance in low- and intermediate-metastatic-risk PCa patients and has the potential to discriminate them from those at higher risks.

Key points: • [68Ga]Ga-RM2 is a promising PET tracer with a high detection rate for intraprostatic PCa especially in intermediate-risk prostate cancer patients. • GRPr-based imaging seems to play a complementary role to choline-based or PSMA-based PET/CT imaging in selected low- and intermediate-risk PCa patients for better characterization and eventually biopsy guidance of prostate cancer disease.

Keywords: PET-CT; Prostate cancer; [18F]FCH; [68Ga]Ga-RM2; mpMRI.

Publication types

  • Clinical Trial, Phase II
  • Clinical Trial, Phase I

MeSH terms

  • Bombesin
  • Choline
  • Gallium Radioisotopes
  • Humans
  • Male
  • Multiparametric Magnetic Resonance Imaging*
  • Positron Emission Tomography Computed Tomography / methods
  • Prostatic Neoplasms* / pathology

Substances

  • fluoromethylcholine
  • Gallium Radioisotopes
  • Bombesin
  • Choline
  • fluorocholine