Organizing structural principles of the IL-17 ligand-receptor axis

Nature. 2022 Sep;609(7927):622-629. doi: 10.1038/s41586-022-05116-y. Epub 2022 Jul 21.

Abstract

The IL-17 family of cytokines and receptors have central roles in host defence against infection and development of inflammatory diseases1. The compositions and structures of functional IL-17 family ligand-receptor signalling assemblies remain unclear. IL-17E (also known as IL-25) is a key regulator of type 2 immune responses and driver of inflammatory diseases, such as allergic asthma, and requires both IL-17 receptor A (IL-17RA) and IL-17RB to elicit functional responses2. Here we studied IL-25-IL-17RB binary and IL-25-IL-17RB-IL-17RA ternary complexes using a combination of cryo-electron microscopy, single-molecule imaging and cell-based signalling approaches. The IL-25-IL-17RB-IL-17RA ternary signalling assembly is a C2-symmetric complex in which the IL-25-IL-17RB homodimer is flanked by two 'wing-like' IL-17RA co-receptors through a 'tip-to-tip' geometry that is the key receptor-receptor interaction required for initiation of signal transduction. IL-25 interacts solely with IL-17RB to allosterically promote the formation of the IL-17RB-IL-17RA tip-to-tip interface. The resulting large separation between the receptors at the membrane-proximal level may reflect proximity constraints imposed by the intracellular domains for signalling. Cryo-electron microscopy structures of IL-17A-IL-17RA and IL-17A-IL-17RA-IL-17RC complexes reveal that this tip-to-tip architecture is a key organizing principle of the IL-17 receptor family. Furthermore, these studies reveal dual actions for IL-17RA sharing among IL-17 cytokine complexes, by either directly engaging IL-17 cytokines or alternatively functioning as a co-receptor.

MeSH terms

  • Cryoelectron Microscopy
  • Interleukin-17* / chemistry
  • Interleukin-17* / metabolism
  • Ligands
  • Protein Domains
  • Protein Multimerization
  • Receptors, Interleukin-17* / chemistry
  • Receptors, Interleukin-17* / metabolism
  • Receptors, Interleukin-17* / ultrastructure
  • Signal Transduction
  • Single Molecule Imaging

Substances

  • Interleukin-17
  • Ligands
  • Receptors, Interleukin-17