"Stripe" transcription factors provide accessibility to co-binding partners in mammalian genomes

Mol Cell. 2022 Sep 15;82(18):3398-3411.e11. doi: 10.1016/j.molcel.2022.06.029. Epub 2022 Jul 20.

Abstract

Regulatory elements activate promoters by recruiting transcription factors (TFs) to specific motifs. Notably, TF-DNA interactions often depend on cooperativity with colocalized partners, suggesting an underlying cis-regulatory syntax. To explore TF cooperativity in mammals, we analyze ∼500 mouse and human primary cells by combining an atlas of TF motifs, footprints, ChIP-seq, transcriptomes, and accessibility. We uncover two TF groups that colocalize with most expressed factors, forming stripes in hierarchical clustering maps. The first group includes lineage-determining factors that occupy DNA elements broadly, consistent with their key role in tissue-specific transcription. The second one, dubbed universal stripe factors (USFs), comprises ∼30 SP, KLF, EGR, and ZBTB family members that recognize overlapping GC-rich sequences in all tissues analyzed. Knockouts and single-molecule tracking reveal that USFs impart accessibility to colocalized partners and increase their residence time. Mammalian cells have thus evolved a TF superfamily with overlapping DNA binding that facilitate chromatin accessibility.

Keywords: DNA motifs; chromatin accessibility; enhancer syntax; gene expression; mammalian genomes; regulatory elements; single molecule tracking; transcription factors.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, N.I.H., Intramural

MeSH terms

  • Animals
  • Binding Sites
  • Chromatin* / genetics
  • DNA / genetics
  • Humans
  • Mammals / genetics
  • Mammals / metabolism
  • Mice
  • Mice, Knockout
  • Protein Binding
  • Transcription Factors* / metabolism

Substances

  • Chromatin
  • Transcription Factors
  • DNA