Bulky oxadithiolate-bridged [FeFe]‑hydrogenase mimics [Fe2(μ-R2odt)(CO)42-diphosphine)] (R = Ph and H) with chelating diphosphines

J Inorg Biochem. 2022 Oct:235:111933. doi: 10.1016/j.jinorgbio.2022.111933. Epub 2022 Jul 14.

Abstract

In order to develop an attractive generation of bulky oxadithiolate-bridged [FeFe]‑hydrogenase mimics with chelating diphosphines, two new series of asymmetrically diphosphine-substituted diiron model complexes [Fe2(μ-R2odt)(CO)42-diphosphine)] (3-5) with bulky Ph2odt bridge and their reference counterparts (6-8) with common odt bridge were obtained from the Me3NO-assisted substitutions of diiron hexacarbonyl precursors [Fe2(μ-R2odt)(CO)6] (R2odt = (SCHR)2O, R = Ph (1) and H (2)) with different diphosphines such as (Ph2P)2NBn (labelled PNBnP, Bn = benzyl), (Ph2PCH2)2NBn (PCNBnCP), and (Ph2PCH2)2CH2 (DPPP)), respectively. All the as-prepared complexes have been characterized by elemental analysis, IR plus NMR spectroscopies, and particularly by X-ray crystallography for 3-8. It is interesting to note that complexes 3 and 6 chelating by small bite-angle PNBnP diphosphine have the favorable dibasal isomer whereas analogues 4, 5 and 7, 8 chelating by flexible backbone PCNBnCP or DPPP ligands possess the main apical-basal isomer in solution or in the solid state. Further, the electrochemical properties of two pairs of representative complexes 3, 6 and 5, 8 are explored and compared by cyclic voltammetry (CV) in the absence and presence of trifluoroacetic acid (CF3CO2H) as proton source, indicating that the complete protonations of 3, 6 and 5, 8 with higher concentration of CF3CO2H lead to two new catalytic waves for the electrocatalytic proton reduction to hydrogen (H2).

Keywords: Bulky dithiolate bridges; Electrochemical proton reduction; Structure; Synthesis; [FeFe]‑hydrogenase mimics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chelating Agents
  • Crystallography, X-Ray
  • Hydrogenase* / chemistry
  • Iron-Sulfur Proteins* / chemistry
  • Phosphines* / chemistry
  • Protons

Substances

  • Chelating Agents
  • Hydrogenase
  • Iron-Sulfur Proteins
  • Phosphines
  • Protons