VOC-DL: Deep learning prediction model for COVID-19 based on VOC virus variants

Comput Methods Programs Biomed. 2022 Sep:224:106981. doi: 10.1016/j.cmpb.2022.106981. Epub 2022 Jun 30.

Abstract

Background and objective: The ever-mutating COVID-19 has infected billions of people worldwide and seriously affected the stability of human society and the world economic development. Therefore, it is essential to make long-term and short-term forecasts for COVID-19. However, the pandemic situation in different countries and regions may be dominated by different virus variants, and the transmission capacity of different virus variants diversifies. Therefore, there is a need to develop a predictive model that can incorporate mutational information to make reasonable predictions about the current pandemic situation.

Methods: This paper proposes a deep learning prediction framework, VOC-DL, based on Variants Of Concern (VOC). The framework uses slope feature method to process the time series dataset containing VOC variant information, and uses VOC-LSTM, VOC-GRU and VOC-BILSTM prediction models included in the framework to predict the daily newly confirmed cases.

Results: We analyzed daily newly confirmed cases in Italy, South Korea, Russia, Japan and India from April 14th, 2021 to July 3rd, 2021. The experimental results show that all VOC-DL models proposed in this paper can accurately predict the pandemic trend in the medium and long term, and VOC-LSTM model has the best prediction performance, with the highest average determination coefficient R2 of 96.83% in five nations' datasets. The overall prediction has robustness.

Conclusions: The experimental results show that VOC-LSTM is the best predictor for such a series of data and has higher prediction accuracy in the long run. At the same time, our VOC-DL framework combining VOC variants has reference significance for predicting other variants in the future.

Keywords: COVID-19; LSTM; Prediction; Time series; VOC-DL model; Variant.

MeSH terms

  • COVID-19* / diagnosis
  • Deep Learning*
  • Forecasting
  • Humans
  • India
  • Pandemics