Mutagenesis of the Loop 3 α-Helix of Neisseria gonorrhoeae TdfJ Inhibits S100A7 Binding and Utilization

mBio. 2022 Aug 30;13(4):e0167022. doi: 10.1128/mbio.01670-22. Epub 2022 Jul 14.

Abstract

Neisseria gonorrhoeae causes the sexually transmitted infection (STI) gonorrhea, which afflicts over 80 million people each year. No vaccine is available to prevent gonorrhea. The pathogen alters the expression and antigenic presentation of key surface molecules, making the identification of suitable vaccine targets difficult. The human host utilizes metal-binding proteins to limit free essential transition metal ions available to invading pathogens, limiting their infective potential, a process called nutritional immunity. To overcome this, N. gonorrhoeae employs outer membrane TonB-dependent transporters (TdTs) that bind host nutritional immunity proteins and strip them of their metal cargo. The TdTs are well conserved, and some play key roles in establishing infections, making them promising vaccine targets. One TdT, TdfJ, recognizes human S100A7, a zinc-binding protein that inhibits the proliferation of other pathogens via zinc sequestration. N. gonorrhoeae uses TdfJ to strip and internalize zinc from S100A7. TdfJ contains a conserved α-helix finger in extracellular loop 3; a similar α-helix in loop 3 of another gonococcal TdT, TbpA, plays a critical role in the interaction between TbpA and human transferrin. Therefore, we hypothesized that the TdfJ loop 3 helix (L3H) participates in interactions with S100A7. We determined the affinity between wild-type TdfJ and S100A7 and then generated a series of mutations in the TdfJ L3H. Our study revealed that mutagenesis of key residues within the L3H reduced S100A7 binding and zinc piracy by the gonococcus, with profound effects seen with substitutions at residues K261 and R262. Taken together, these data suggest a key role for the TdfJ L3H in subverting host metal restriction. IMPORTANCE Gonorrhea is a global threat to public health due to the increasing incidence of antimicrobial drug resistance, rising treatment costs, and lack of a protective vaccine. The prospect of untreatable gonococcal infections has spurred efforts to identify targets for novel therapeutic and prevention strategies, and members of the family of outer membrane TonB-dependent metal transporters have emerged as promising candidates. These conserved surface molecules play a critical role in establishing infection by facilitating nutrient uptake in the human host that dedicates considerable efforts to restricting nutrient availability. In this study, we characterized the binding interaction between the zinc importer TdfJ and its human zinc source, S100A7. We went on to identify a key region of TdfJ that mediates this interaction. With a more thorough understanding of the intricate relationships between these bacterial nutrient receptors and their host nutrient sources, we may help pave the way toward identifying effective prophylaxis and treatment for an important human disease.

Keywords: Neisseria gonorrhoeae; S100A7; TonB-dependent transporter; nutritional immunity.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Gonorrhea* / microbiology
  • Humans
  • Mutagenesis
  • Neisseria gonorrhoeae* / metabolism
  • Protein Conformation, alpha-Helical
  • S100 Calcium Binding Protein A7 / genetics
  • S100 Calcium Binding Protein A7 / metabolism
  • Zinc / metabolism

Substances

  • S100 Calcium Binding Protein A7
  • S100A7 protein, human
  • Zinc