Fossils Do Not Substantially Improve, and May Even Harm, Estimates of Diversification Rate Heterogeneity

Syst Biol. 2023 May 19;72(1):50-61. doi: 10.1093/sysbio/syac049.

Abstract

The fossilized birth-death (FBD) model is a naturally appealing way of directly incorporating fossil information when estimating diversification rates. However, an important yet often overlooked property of the original FBD derivation is that it distinguishes between two types of sampled lineages. Here, we first discuss and demonstrate the impact of severely undersampling, and even not including fossils that represent samples of lineages that also had sampled descendants. We then explore the benefits of including fossils, generally, by implementing and then testing two types of FBD models, including one that converts a fossil set into stratigraphic ranges, in more complex likelihood-based models that assume multiple rate classes across the tree. Under various simulation scenarios, including a scenario that exists far outside the set of models we evaluated, including fossils rarely outperform analyses that exclude them altogether. At best, the inclusion of fossils improves precision but does not influence bias. Similarly, we found that converting the fossil set to stratigraphic ranges, which is one way to remedy the effects of undercounting the number of k-type fossils, results in turnover rates and extinction fraction estimates that are generally underestimated. Although fossils remain essential for understanding diversification through time, in the specific case of understanding diversification given an existing, largely modern tree, they are not especially beneficial. [Fossilized birth-death; fossils; MiSSE; state speciation extinction; stratigraphic ranges; turnover rate.].

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Fossils*
  • Genetic Speciation*
  • Likelihood Functions
  • Phylogeny
  • Time