Machine learning prediction of COVID-19 severity levels from salivaomics data

ArXiv [Preprint]. 2022 Jul 15:arXiv:2207.07274v1.

Abstract

The clinical spectrum of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the strain of coronavirus that caused the COVID-19 pandemic, is broad, extending from asymptomatic infection to severe immunopulmonary reactions that, if not categorized properly, may be life-threatening. Researchers rate COVID-19 patients on a scale from 1 to 8 according to the severity level of COVID-19, 1 being healthy and 8 being extremely sick, based on a multitude of factors including number of clinic visits, days since the first sign of symptoms, and more. However, there are two issues with the current state of severity level designation. Firstly, there exists variation among researchers in determining these patient scores, which may lead to improper treatment. Secondly, researchers use a variety of metrics to determine patient severity level, including metrics involving plasma collection that require invasive procedures. This project aims to remedy both issues by introducing a machine learning framework that unifies severity level designations based on noninvasive saliva biomarkers. Our results show that we can successfully use machine learning on salivaomics data to predict the severity level of COVID-19 patients, indicating the presence of viral load using saliva biomarkers.

Publication types

  • Preprint