A DNA origami rotary ratchet motor

Nature. 2022 Jul;607(7919):492-498. doi: 10.1038/s41586-022-04910-y. Epub 2022 Jul 20.

Abstract

To impart directionality to the motions of a molecular mechanism, one must overcome the random thermal forces that are ubiquitous on such small scales and in liquid solution at ambient temperature. In equilibrium without energy supply, directional motion cannot be sustained without violating the laws of thermodynamics. Under conditions away from thermodynamic equilibrium, directional motion may be achieved within the framework of Brownian ratchets, which are diffusive mechanisms that have broken inversion symmetry1-5. Ratcheting is thought to underpin the function of many natural biological motors, such as the F1F0-ATPase6-8, and it has been demonstrated experimentally in synthetic microscale systems (for example, to our knowledge, first in ref. 3) and also in artificial molecular motors created by organic chemical synthesis9-12. DNA nanotechnology13 has yielded a variety of nanoscale mechanisms, including pivots, hinges, crank sliders and rotary systems14-17, which can adopt different configurations, for example, triggered by strand-displacement reactions18,19 or by changing environmental parameters such as pH, ionic strength, temperature, external fields and by coupling their motions to those of natural motor proteins20-26. This previous work and considering low-Reynolds-number dynamics and inherent stochasticity27,28 led us to develop a nanoscale rotary motor built from DNA origami that is driven by ratcheting and whose mechanical capabilities approach those of biological motors such as F1F0-ATPase.

MeSH terms

  • DNA* / chemistry
  • Facilitated Diffusion*
  • Hydrogen-Ion Concentration
  • Molecular Motor Proteins* / chemistry
  • Molecular Motor Proteins* / metabolism
  • Motion
  • Movement
  • Osmolar Concentration
  • Proton-Translocating ATPases / chemistry
  • Proton-Translocating ATPases / metabolism
  • Stochastic Processes
  • Temperature
  • Thermodynamics

Substances

  • Molecular Motor Proteins
  • DNA
  • Proton-Translocating ATPases