Sustained stoichiometric imbalance and its ecological consequences in a large oligotrophic lake

Proc Natl Acad Sci U S A. 2022 Jul 26;119(30):e2202268119. doi: 10.1073/pnas.2202268119. Epub 2022 Jul 11.

Abstract

Considerable attention is given to absolute nutrient levels in lakes, rivers, and oceans, but less is paid to their relative concentrations, their nitrogen:phosphorus (N:P) stoichiometry, and the consequences of imbalanced stoichiometry. Here, we report 38 y of nutrient dynamics in Flathead Lake, a large oligotrophic lake in Montana, and its inflows. While nutrient levels were low, the lake had sustained high total N: total P ratios (TN:TP: 60 to 90:1 molar) throughout the observation period. N and P loading to the lake as well as loading N:P ratios varied considerably among years but showed no systematic long-term trend. Surprisingly, TN:TP ratios in river inflows were consistently lower than in the lake, suggesting that forms of P in riverine loading are removed preferentially to N. In-lake processes, such as differential sedimentation of P relative to N or accumulation of fixed N in excess of denitrification, likely also operate to maintain the lake's high TN:TP ratios. Regardless of causes, the lake's stoichiometric imbalance is manifested in P limitation of phytoplankton growth during early and midsummer, resulting in high C:P and N:P ratios in suspended particulate matter that propagate P limitation to zooplankton. Finally, the lake's imbalanced N:P stoichiometry appears to raise the potential for aerobic methane production via metabolism of phosphonate compounds by P-limited microbes. These data highlight the importance of not only absolute N and P levels in aquatic ecosystems, but also their stoichiometric balance, and they call attention to potential management implications of high N:P ratios.

Keywords: ecosystem; limnology; nitrogen; phosphorus; stoichiometry.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • China
  • Ecosystem*
  • Environmental Monitoring
  • Eutrophication
  • Lakes* / chemistry
  • Lakes* / microbiology
  • Methane / biosynthesis
  • Nitrogen* / analysis
  • Nitrogen* / metabolism
  • Organophosphonates / metabolism
  • Phosphorus* / analysis
  • Phosphorus* / metabolism
  • Phytoplankton* / growth & development
  • Phytoplankton* / metabolism
  • Zooplankton* / growth & development
  • Zooplankton* / metabolism

Substances

  • Organophosphonates
  • Phosphorus
  • Nitrogen
  • Methane