Sequential rescue and repair of stalled and damaged ribosome by bacterial PrfH and RtcB

Proc Natl Acad Sci U S A. 2022 Jul 19;119(29):e2202464119. doi: 10.1073/pnas.2202464119. Epub 2022 Jul 12.

Abstract

RtcB is involved in transfer RNA (tRNA) splicing in archaeal and eukaryotic organisms. However, most RtcBs are found in bacteria, whose tRNAs have no introns. Because tRNAs are the substrates of archaeal and eukaryotic RtcB, it is assumed that bacterial RtcBs are for repair of damaged tRNAs. Here, we show that a subset of bacterial RtcB, denoted RtcB2 herein, specifically repair ribosomal damage in the decoding center. To access the damage site for repair, however, the damaged 70S ribosome needs to be dismantled first, and this is accomplished by bacterial PrfH. Peptide-release assays revealed that PrfH is only active with the damaged 70S ribosome but not with the intact one. A 2.55-Å cryo-electron microscopy structure of PrfH in complex with the damaged 70S ribosome provides molecular insight into PrfH discriminating between the damaged and the intact ribosomes via specific recognition of the cleaved 3'-terminal nucleotide. RNA repair assays demonstrated that RtcB2 efficiently repairs the damaged 30S ribosomal subunit but not the damaged tRNAs. Cell-based assays showed that the RtcB2-PrfH pair reverse the damage inflicted by ribosome-specific ribotoxins in vivo. Thus, our combined biochemical, structural, and cell-based studies have uncovered a bacterial defense system specifically evolved to reverse the lethal ribosomal damage in the decoding center for cell survival.

Keywords: RNA repair; cryo-EM; ribosome rescue; ribotoxin.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Amino Acyl-tRNA Synthetases* / chemistry
  • Amino Acyl-tRNA Synthetases* / genetics
  • Amino Acyl-tRNA Synthetases* / metabolism
  • Cryoelectron Microscopy
  • Escherichia coli Proteins* / chemistry
  • Escherichia coli Proteins* / genetics
  • Escherichia coli Proteins* / metabolism
  • Protein Conformation
  • RNA Splicing
  • RNA, Transfer / chemistry
  • Ribosome Subunits, Large, Bacterial* / drug effects
  • Ribosome Subunits, Large, Bacterial* / metabolism

Substances

  • Escherichia coli Proteins
  • RNA, Transfer
  • Amino Acyl-tRNA Synthetases
  • RtcB protein, E coli