Targeting oxidized phospholipids by AAV-based gene therapy in mice with established hepatic steatosis prevents progression to fibrosis

Sci Adv. 2022 Jul 15;8(28):eabn0050. doi: 10.1126/sciadv.abn0050. Epub 2022 Jul 15.

Abstract

Oxidized phosphatidylcholines (OxPCs) are implicated in chronic tissue damage. Hyperlipidemic LDL-R--deficient mice transgenic for an OxPC-recognizing IgM fragment (scFv-E06) are protected against nonalcoholic fatty liver disease (NAFLD). To examine the effect of OxPC elimination at different stages of NAFLD progression, we used cre-dependent, adeno-associated virus serotype 8-mediated expression of the single-chain variable fragment of E06 (AAV8-scFv-E06) in hepatocytes of albumin-cre mice. AAV8-induced expression of scFv-E06 at the start of FPC diet protected mice from developing hepatic steatosis. Independently, expression of scFv-E06 in mice with established steatosis prevented the progression to hepatic fibrosis. Mass spectrometry-based oxophospho-lipidomics identified individual OxPC species that were reduced by scFv-E06 expression. In vitro, identified OxPC species dysregulated mitochondrial metabolism and gene expression in hepatocytes and hepatic stellate cells. We demonstrate that individual OxPC species independently affect disease initiation and progression from hepatic steatosis to steatohepatitis, and that AAV-mediated expression of scFv-E06 is an effective therapeutic intervention.

MeSH terms

  • Animals
  • Fibrosis
  • Genetic Therapy
  • Hepatocytes / metabolism
  • Liver / metabolism
  • Mice
  • Mice, Inbred C57BL
  • Non-alcoholic Fatty Liver Disease* / genetics
  • Non-alcoholic Fatty Liver Disease* / metabolism
  • Non-alcoholic Fatty Liver Disease* / therapy
  • Oxidation-Reduction
  • Phospholipids* / metabolism

Substances

  • Phospholipids