Electronic transport coefficients from density functional theory across the plasma plane

Phys Rev E. 2022 Jun;105(6-2):065204. doi: 10.1103/PhysRevE.105.065204.

Abstract

We investigate the thermopower and Lorenz number of hydrogen with Kohn-Sham density functional theory (DFT) across the plasma plane toward the near-classical limit, i.e., weakly degenerate and weakly coupled states. Our results are in concordance with certain limiting values for the Lorentz plasma, a model system which only considers electron-ion scattering. Thereby, we clearly show that the widely used method of calculating transport properties via the Kubo-Greenwood (KG) formalism does not capture electron-electron scattering processes. Our discussion also addresses the inadequateness of assuming a Drude-like frequency behavior for the conductivity of nondegenerate plasmas by revisiting the relaxation time approximation within kinetic theory.