Fine mapping and accurate prediction of complex traits using Bayesian Variable Selection models applied to biobank-size data

Eur J Hum Genet. 2023 Mar;31(3):313-320. doi: 10.1038/s41431-022-01135-5. Epub 2022 Jul 19.

Abstract

Modern GWAS studies use an enormous sample size and ultra-high density SNP genotypes. These conditions reduce the mapping resolution of marginal association tests-the method most often used in GWAS. Multi-locus Bayesian Variable Selection (BVS) offers a one-stop solution for powerful and precise mapping of risk variants and polygenic risk score (PRS) prediction. We show (with an extensive simulation) that multi-locus BVS methods can achieve high power with a low false discovery rate and a much better mapping resolution than marginal association tests. We demonstrate the performance of BVS for mapping and PRS prediction using data from blood biomarkers from the UK-Biobank (~300,000 samples and ~5.5 million SNPs). The article is accompanied by open-source R-software that implement the methods used in the study and scales to biobank-sized data.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bayes Theorem
  • Biological Specimen Banks*
  • Computer Simulation
  • Genome-Wide Association Study / methods
  • Humans
  • Multifactorial Inheritance*
  • Polymorphism, Single Nucleotide
  • Software