Unusual photophysical properties of a new tricyclic derivative of thiopurines in terms of potential applications

Spectrochim Acta A Mol Biomol Spectrosc. 2022 Nov 15:281:121620. doi: 10.1016/j.saa.2022.121620. Epub 2022 Jul 13.

Abstract

The thio analogues of purine bases have been found to possess notable biological and pharmacological capabilities and have an important role to play as anticancer and immunosuppressive drugs. In this work a new tricyclic analogue of guanosine containing sulfur was synthesized, in particular, DTEG (2',3',5'-tri-O-acetyl-6,9-dithioethanoguanosine). Although there is promise for thiopurine derivatives for biomedical applications, there are some liabilities in regard to their exposure to light. As a preliminary survey for such difficulties with DTEG, this work looks into spectral and photophysical processes of DTEG using time-resolved and steady-state optical excitation. In contrast to other thiopurines, which have long-lived triplets, DTEG is shown to have a short-lived triplet making it less dangerous for singlet-oxygen sensitization. Even in anaerobic solutions, its photoreactivity is negligible. These various unusual photochemical properties of DTEG are consistent with DTEG being very promising as an alternative drug to the currently used 6-thiopurines. DTEG also has some interesting photophysical behavior that is distinct from other thioketones. Although thioketones have an unusual fluorescence violating Kasha's Rule and emitting from the second excited singlet state, DTEG does this also, but, in addition, it shows dual fluorescence by emitting from its first excited singlet as well. The assignments of the nature of these excited states are supported by DFT results. This theory and associated kinetic analysis show quantitatively that the dual fluorescence is, in part, tied to the relatively fast S2 to S1 internal conversion compared to other S2 decays and, in part, tied to the relatively slow nonradiative decay of S1 itself.

Keywords: Excited states; Fluorescence; Fluorescence lifetime; Thionucleoside analogs.

MeSH terms

  • Fluorescence
  • Kinetics
  • Thiones*

Substances

  • Thiones