The function of BK channels extracted and purified within SMALPs

Biochem J. 2022 Aug 12;479(15):1609-1619. doi: 10.1042/BCJ20210628.

Abstract

Human BK channels are large voltage and Ca2+-activated K+ channels, involved in several important functions within the body. The core channel is a tetramer of α subunits, and its function is modulated by the presence of β and γ accessory subunits. BK channels composed of α subunits, as well as BK channels composed of α and β1 subunits, were successfully solubilised from HEK cells with styrene maleic acid (SMA) polymer and purified by nickel affinity chromatography. Native SMA-PAGE analysis of the purified proteins showed the α subunits were extracted as a tetramer. In the presence of β1 subunits, they were co-extracted with the α subunits as a heteromeric complex. Purified SMA lipid particles (SMALPs) containing BK channel could be inserted into planar lipid bilayers (PLB) and single channel currents recorded, showing a high conductance (≈260 pS), as expected. The open probability was increased in the presence of co-purified β1 subunits. However, voltage-dependent gating of the channel was restricted. In conclusion, we have demonstrated that SMA can be used to effectively extract and purify large, complex, human ion channels, from low expressing sources. That these large channels can be incorporated into PLB from SMALPs and display voltage-dependent channel activity. However, the SMA appears to reduce the voltage dependent gating of the channels.

Keywords: BK channel; SMALP; SMA–PAGE; detergent-free; planar lipid bilayer.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Humans
  • Ion Channel Gating*
  • Large-Conductance Calcium-Activated Potassium Channel alpha Subunits / genetics
  • Large-Conductance Calcium-Activated Potassium Channel alpha Subunits / metabolism
  • Large-Conductance Calcium-Activated Potassium Channels* / metabolism

Substances

  • Large-Conductance Calcium-Activated Potassium Channel alpha Subunits
  • Large-Conductance Calcium-Activated Potassium Channels