Phytosynthesis of Co3O4 Nanoparticles as the High Energy Storage Material of an Activated Carbon/Co3O4 Symmetric Supercapacitor Device with Excellent Cyclic Stability Based on a Na2SO4 Aqueous Electrolyte

ACS Omega. 2022 Jun 28;7(27):23673-23684. doi: 10.1021/acsomega.2c02305. eCollection 2022 Jul 12.

Abstract

The benign preparation of cobalt oxide nanoparticles (Co3O4-NPs) was performed using marine red algae extract (Grateloupia sparsa) as a simple, cost-effective, scalable, and one-pot hydrothermal technique. The nominated extract was employed as an environmental reductant and stabilizing agent. The resultant product showed the typical peak of Co3O4-NPs around 400 nm wavelength as ascertained by UV-vis spectroscopy. Size and morphological techniques combined with X-ray diffraction (XRD) showed the small size of Co3O4-NPs deformed in a spherical shape. The activated carbon (AC) electrode and Co3O4-NP electrode delivered a specific capacitance (C sp) of 125 and 182 F g-1 at 1 A g-1, respectively. The energy density of the AC and AC/Co3O4 electrodes with a power density of 543.44 and 585 W kg-1 was equal to 17.36 and 25.27 Wh kg-1, respectively. The capacitance retention of designed electrodes was 99.2 and 99.5% after 3000 cycles. Additionally, a symmetric AC/Co3O4//AC/Co3O4 supercapacitor device had a specific capacitance (C sp) of 125 F g-1 and a high energy density of 55 Wh kg-1 at a power density of 650 W kg-1. Meanwhile, the symmetric device exhibited superior cyclic stability after 8000 cycles, with a capacitance retention of 93.75%. Overall, the adopted circular criteria, employed to use green technology to avoid noxious chemicals, make the AC/Co3O4 nanocomposite an easily accessible electrode for energy storage applications.