The ClpP activator ONC-212 (TR-31) inhibits BCL2 and B-cell receptor signaling in CLL

EJHaem. 2021 Jan 14;2(1):81-93. doi: 10.1002/jha2.160. eCollection 2021 Feb.

Abstract

Despite advances in therapy, a significant proportion of patients with chronic lymphocytic leukemia (CLL) relapse with drug resistant disease. Novel treatment approaches are required, particularly for high risk disease. The imipridones represent a new class of cancer therapy that has been investigated in pre-clinical and clinical trials against a range of different cancers. We investigated the effects of the imipridone, ONC-212, against CLL cells cultured under conditions that mimic aspects of the tumour microenvironment and a TP53ko CLL cell line (OSU-CLL-TP53ko). ONC-212 induced dose-dependent apoptosis, cell cycle arrest and reduced the migration of CLL cells in vitro, including cells from patients with TP53 lesions and OSU-CLL-TP53ko cells. The effects of ONC-212 were associated with protein changes consistent with activation of the mitochondrial protease, CIpP, and the integrated stress response. We also observed inhibition of pathways downstream of the B-cell receptor (BCR) (AKT and MAPK-ERK1/2) and a pro-apoptotic shift in the balance of proteins of the BCL2 family of proteins (BCL2, MCL1, BCLxL, BAX and NOXA). In conclusion, the study suggests ONC-212 may represent an effective treatment for high risk CLL disease by inhibiting multiple facets of the BCR signaling pathway and the pro-survival effects of the BCL2-family proteins.

Keywords: TR‐compounds; chronic lymphocytic leukemia; imipridone; tumour microenvironment.